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Announcements 1
¥ Registration updates / reminders:

¥ You must register for both the lecture and lab

¥ If you are in Ithaca and could not register previously, you can 
now register for the lecture and lab - register for either lab 
(you will go to the same computer lab regardless of your 
registered lab)

¥ In Ithaca, undergrads register for 4830 / grads for 6830

¥ You may take the class for a grade, S/U | P/F, or Audit

¥ You are also welcome to sit in this class, but if you choose to 
do this and are able to register for the class please register 
for an ÒAuditÓ (note that we will grade any work you turn 
in!)



Announcements 1I
¥ Computer lab - FIRST LAB IS TODAY (!!):

¥ Regardless of your registration, computer labs will be each 
week, Thurs. 5-6PM

¥ If you have an unavoidable conßict with this time, please 
contact me ASAP

¥ In Ithaca the lab will be in MNLB30A (Mann Library 
Basement)

¥ At WCMC, the lab will be in the Dept. of Genetic Med. 
conference (= lecture)

¥ In Ithaca, please bring your laptop this week (you will likely 
not have to in subsequent weeks), at WCMC bring your 
laptop every week (!!)



Announcements III
¥ Class ofÞce hours:

¥ Jason - Thurs. 3-5PM in 101 Biotech Suite AND Dept. Genetic Med. 
conference (BOTH Ithaca and Weill)

¥ Amanda - Tues. 3-5PM in 343 Weill Hall (Ithaca only)

¥ Jin - no ofÞce hours

¥ UnofÞcial ofÞce hours can be scheduled by appointment (!!)

¥ These will start NEXT week = NO ofÞce hours this week!!

¥ Class email listserv: MEZEY-QUANTGENOME-L@cornell.edu

¥ email Amanda to get on (or off) list: yg246@cornell.edu

¥ Test message will be sent tomorrow afternoon

¥ Class website: http://mezeylab.cb.bscb.cornell.edu/

mailto:MEZEY-QUANTGENOME-L@cornell.edu
mailto:MEZEY-QUANTGENOME-L@cornell.edu
mailto:yg246@cornell.edu
mailto:yg246@cornell.edu
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Summary of lecture 2: 
Introduction to probability basics

¥ Last lecture, we provided a broad introduction to the Þeld of 
quantitative genomics and genetics, which is concerned with 
modeling and the discovery of relationships between genomes 
(genotypes) and phenotypes 

¥ In this class, we will be concerned with the most basic 
problem of the Þeld: how to identify genotypes where 
differences among individual genomes produce differences in 
individual phenotypes (e.g. genetic association studies)

¥ The modeling framework for the Þeld is developed from the 
Þelds of probability and statistics  



DeÞnitions: Probability / Statistics

¥ Probability  (non-technical def) - a mathematical framework 
for modeling under uncertainty

¥ Statistics  (non-technical def) - a system for interpreting data 
for the purposes of prediction and decision making given 
uncertainty 

These frameworks are particularly appropriate for modeling genetic 
systems, since we are missing information concerning the complete set 
of components and relationships among components that determine 
genome-phenotype relationships 
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Starting point: a system

¥ System  - a process, an object, etc. which we would like to 
know something about

¥ Example: Genetic contribution to height 

Genome Height

SNP {
A

T

Taller (on average)

Shorter (on average)
?



Starting point: a system

¥ System  - a process, an object, etc. which we would like to 
know something about

¥ Examples: (1) coin, (2) heights in a population 

Coin - same amount of metal on both sides?

Heights - what is the average height in the US?



Experiments (general)

¥ To learn about a system, we generally pose a speciÞc question 
that suggests an experiment, where we can extrapolate a 
property of the system from the results of the experiment

¥ Examples of ÒidealÓ experiments (System / Experiment):

¥ SNP contribution to height / directly manipulate A -> T 
keeping all other genetic, environmental, etc. components the 
same and observe result on height

¥ Coin / cut coin in half, melt and measure the volume of each 
half

¥ Height / measure the height of every person in the US



Experiments (general)

¥ To learn about a system, we generally pose a speciÞc question 
that suggests an experiment, where we can extrapolate a 
property of the system from the results of the experiment

¥ Examples of Ònon-idealÓ experiments (System / Experiment):

¥ SNP contribution to height / measure heights of individuals 
that have an A and individuals that have a T

¥ Coin / ßip the coin and observe ÒHeadsÓ and ÒTailsÓ

¥ Height / measure some people in the US



Experiments and samples

¥ Experiment  - a manipulation or measurement of a system 
that produces an outcome we can observe

¥ Experimental trial  - one instance of an experiment

¥ Sample outcome  - a possible outcome of the experiment

¥ Sample  - the results of one or more experimental trials

¥ Example (Experiment / Sample outcomes):

¥ Coin ßip /  ÒHeadsÓ or ÒTailsÓ

¥ Two coin ßips / HH,  HT,  TH,  TT

¥ Measure heights in this class / 5Õ, 5Õ3ÕÕ,5Õ3.5, ...



Modeling the results of (non-ideal) 
experiments

¥ Mathematics (while not the only approach!) provides a particularly valuable 
foundation for describing or modeling a system or the outcomes of an experiment 

¥ The reason is that a considerable amount of mathematics is constructed to provide 
a good representation of how we think about the world in a way that matches our 
intuition

¥ Once constructed, we can use this modeling approach to formalize our intuition in 
a manner that has currency for others and develop deeper understanding

¥ In general, mathematics useful for modeling (including probability) can be developed 
from foundations developed in set theory

¥ A lot of assumptions, called axioms, are at the foundation of set theory put in place 
so that set theory produces logical constructions that match our intuition (e.g. the 
ZFC axioms)

¥ There is no perfect set of axioms for all mathematics (e.g. see GodelÕs 
incompleteness theorems) 



Sets / Set Operations / DeÞnitions
¥ Set  - any collection, group, or conglomerate

¥ Element  - a member of a set

¥ Set Operations:

¥ Important DeÞnitions:

¥ A Special Set:

Union (! ) " an operator on sets which produces a single set containing all elements
of the sets.

Intersection (#) " an operator on sets which produces a single set containing all ele-
ments common to all of the sets.

Note that we can think of these as ÔorÕ and ÔandÕ. A simple example of applying the union
operator is { 5�, 5�3��} ! { 5�3��, 5�5���} = { 5�, 5�3��, 5�5���} and a simple example of intersection
is { 5�, 5�3��} # { 5�3��, 5�5���} = { 5�3��} . Note that we can write the following generalizations
of these operators:

∞�

i =1

A i = A 1 ! A 2 ! ... (1)

∞�

i =1

A i = A 1 # A 2 # ... (2)

where eachA i is a set. Before we leave sets and sample spaces, letÕs provide a few other
important deÞnitions:

Subset ($ ) " a set that is contained within another set, e.g. { H } $ { H, T }

Complement (A c) " the set containing all other elements of a set other thanA , e.g.
{ H } c = { T} .

Empty Set (%) " the set with no elements.

The empty set is unique and is sometimes represented as{ } .

Disjoint Sets " sets with no elements in common.

Note that for disjoint sets A i and A j , the following holds: A i # A j = %.

5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we deÞne afunction. Before we consider the speciÞcs of how we deÞne aprob-
ability function or measure, letÕs consider the intuitive deÞnition of a function:

Function (intuitive def.) " a mathematical operator that takes an input and produces an
output.
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Union (∪) ≡ an operator on sets which produces a single set containing all elements
of the sets.

Intersection (∩) ≡ an operator on sets which produces a single set containing all ele-
ments common to all of the sets.

Note that we can think of these as ÔorÕ and ÔandÕ. A simple example of applying the union
operator is {5!, 5!3!!} ∪ {5!3!!, 5!5!!!} = {5!, 5!3!!, 5!5!!!} and a simple example of intersection
is {5!, 5!3!!} ∩ {5!3!!, 5!5!!!} = {5!3!!}. Note that we can write the following generalizations
of these operators:

"!

i=1

Ai = A1 ∪A2 ∪ ... (1)

""

i=1

Ai = A1 ∩A2 ∩ ... (2)

where eachAi is a set. Before we leave sets and sample spaces, letÕs provide a few other
important deÞnitions:

Subset (⊂) ≡ a set that is contained within another set, e.g. {H } ⊂ {H, T }

Complement (Ac) ≡ the set containing all other elements of a set other thanA, e.g.
{H }c = {T}.

Disjoint Sets ≡ sets with no elements in common.

Empty Set (∅) ≡ the set with no elements (the empty set is unique and is sometimes
and is sometimes represented as{ }).

Disjoint Sets ≡ sets with no elements in common.

Note that for disjoint sets Ai and Aj , the following holds: Ai ∩Aj = ∅.

5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we deÞne afunction. Before we consider the speciÞcs of how we deÞne aprob-
ability function or measure, letÕs consider the intuitive deÞnition of a function:

Function (intuitive def.) ≡ a mathematical operator that takes an input and produces an
output.
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Union (! ) " an operator on sets which produces a single set containing all elements
of the sets.

Intersection (#) " an operator on sets which produces a single set containing all ele-
ments common to all of the sets.

Note that we can think of these as ÔorÕ and ÔandÕ. A simple example of applying the union
operator is {5!, 5!3!!} ! {5!3!!, 5!5!!!} = {5!, 5!3!!, 5!5!!!} and a simple example of intersection
is {5!, 5!3!!} # {5!3!!, 5!5!!!} = {5!3!!}. Note that we can write the following generalizations
of these operators:

"!

i=1

Ai = A1 ! A2 ! ... (1)

""

i=1

Ai = A1 # A2 # ... (2)

where eachAi is a set. Before we leave sets and sample spaces, letÕs provide a few other
important deÞnitions:

Element of ($) " an object within a set, e.g. H $ {H, T }

Subset (%) " a set that is contained within another set, e.g. {H } % {H, T }

Complement (Ac) " the set containing all other elements of a set other thanA, e.g.
{H }c = {T}.

Disjoint Sets " sets with no elements in common.

Empty Set (&) " the set with no elements (the empty set is unique and is sometimes
and is sometimes represented as{ }).

Disjoint Sets " sets with no elements in common.

Note that for disjoint sets Ai and Aj , the following holds: Ai # Aj = &.

N = {1, 2, 3, ...} (3)

Z = {... ' 3, ' 2, ' 1, 0, 1, 2, 3, ...} (4)

R = {( 0 ) } (5)

'* > x > * (6)
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Some Special Sets and InÞnite:

¥ The following sets have properties that align with our intuitive 
conception about how we represent and use groups

¥ The Natural Numbers and the Integers:

¥ The Reals:

¥ Note that these sets are inÞnite (although they represent two 
different ÒsizesÓ of inÞnite!), where we often make use of the 
following symbols:

Union (! ) " an operator on sets which produces a single set containing all elements
of the sets.

Intersection (#) " an operator on sets which produces a single set containing all ele-
ments common to all of the sets.

Note that we can think of these as ‘or’ and ‘and’. A simple example of applying the union
operator is { 5!, 5!3!!} ! { 5!3!!, 5!5!!!} = { 5!, 5!3!!, 5!5!!!} and a simple example of intersection
is { 5!, 5!3!!} # { 5!3!!, 5!5!!!} = { 5!3!!} . Note that we can write the following generalizations
of these operators:

"!

i=1

A i = A 1 ! A 2 ! ... (1)

""

i=1

A i = A 1 # A 2 # ... (2)

where each A i is a set. Before we leave sets and sample spaces, let’s provide a few other
important definitions:

Subset ($ ) " a set that is contained within another set, e.g. { H } $ { H, T }

Complement (A c) " the set containing all other elements of a set other than A , e.g.
{ H } c = { T} .

Disjoint Sets " sets with no elements in common.

Empty Set (%) " the set with no elements (the empty set is unique and is sometimes
and is sometimes represented as { } ).

Disjoint Sets " sets with no elements in common.

Note that for disjoint sets A i and A j , the following holds: A i # A j = %.

N = { 1, 2, 3, ...} (3)

Z = { &3, &2, &1, 0, 1, 2, 3, ...} (4)

R = { ' 0 ( } (5)

&) > x > ) (6)
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Sample Spaces / Sigma Algebra
¥ Sample Space  (   ) - set comprising all possible outcomes associated with an experiment

¥ Examples (Experiment / Sample Space):

¥ ÒSingle coin ßipÓ / {H, T}

¥ ÒTwo coin ßipsÓ / {HH, HT, TH, TT}

¥ ÒMeasure HeightsÓ / {5Õ, 5Õ3ÕÕ, 5Õ3.5ÕÕ, ... }

¥ Events  - a subset of the sample space

¥ Sigma Algebra  (    ) - a collection of events (subsets) of     of interest with the following 
three properties: 1.            , 2.                                 , 3.                                                             
Note that we are interested in a particular Sigma Algebra for each sample space...

¥ Examples (Sample Space / Sigma Algebra):

¥ {H, T} /

¥ {HH, HT, TH, TT} / see board

¥ {5Õ, 5Õ3ÕÕ, 5Õ3.5ÕÕ, ... } / letÕs table this one for the moment

! (7)

F (8)

! " F (9)

This A " F then A c " F

A 1,A 2, ... " F then
! ∞

i =1 A i " F

5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we deÞne afunction. Before we consider the speciÞcs of how we deÞne aprob-
ability function or measure, letÕs consider the intuitive deÞnition of a function:

Function (intuitive def.) # a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us asY = f (X) where f () is the function that maps
the values taken byX to Y . For example, we can have the functionY = X

2 (see Þgure
from class).

We are going to deÞne aprobability function which map sample spacesto the real line
(to numbers):

Pr(S) : S $ R (10)

wherePr(S) is a function, which we could have written f (S).

To be useful, we need some rules for how probability functions are deÞned (that is, not all
functions on sample spaces are probability functions). These rules are are called theaxioms
of probability (note that an axiom is a rule that we assume). There is some variation in
how these are presented, but we will present them as three axioms:

Axioms of Probability

1. For A %S, Pr(A ) ! 0.

2. Pr(S) = 1.

3. For A 1,A 2, ... " S, if A i &A j = ! (disjoint) for each i '= j: Pr(
! ∞

i A i ) =
" ∞

i Pr(A ).

These axioms are necessary for many of the logically consistent results built upon proba-
bility. Intuitively, we can think of these axioms as matching how we tend to think about

7
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! ∞
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This concept is often introduced to us asY = f (X ) where f () is the function that maps
the values taken by X to Y . For example, we can have the functionY = X 2 (see Þgure
from class).

We are going to deÞne aprobability function which map sample spacesto the real line
(to numbers):

P r (S) : S $ R (10)

where P r (S) is a function, which we could have written f (S).

To be useful, we need some rules for how probability functions are deÞned (that is, not all
functions on sample spaces are probability functions). These rules are are called theaxioms
of probability (note that an axiom is a rule that we assume). There is some variation in
how these are presented, but we will present them as three axioms:

Axioms of Probability

1. For A % S, P r(A) ! 0.

2. P r (S) = 1.

3. For A1,A2, ... " S, if Ai &Aj = ! (disjoint) for each i '= j : P r (
! !

i Ai ) =
" !

i P r (A).

These axioms are necessary for many of the logically consistent results built upon proba-
bility. Intuitively, we can think of these axioms as matching how we tend to think about

7

Ω (7)

F (8)

! " F (9)

This A " F then Ac " F

A1,A2, ... " F then
! !

i=1 Ai " F

5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we deÞne afunction. Before we consider the speciÞcs of how we deÞne aprob-
ability function or measure, letÕs consider the intuitive deÞnition of a function:

Function (intuitive def.) # a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us asY = f (X ) where f () is the function that maps
the values taken by X to Y . For example, we can have the functionY = X 2 (see Þgure
from class).

We are going to deÞne aprobability function which map sample spaces to the real line
(to numbers):

P r (S) : S $ R (10)

where P r (S) is a function, which we could have written f (S).

To be useful, we need some rules for how probability functions are deÞned (that is, not all
functions on sample spaces are probability functions). These rules are are called theaxioms
of probability (note that an axiom is a rule that we assume). There is some variation in
how these are presented, but we will present them as three axioms:

Axioms of Probability

1. For A % S, P r(A) ! 0.

2. P r (S) = 1.

3. For A1,A2, ... " S, if Ai&Aj = ! (disjoint) for each i '= j : P r (
! !

i
Ai) =

" !
i

Pr(A).

These axioms are necessary for many of the logically consistent results built upon proba-
bility. Intuitively, we can think of these axioms as matching how we tend to think about

7

! (7)

F (8)

! " F (9)

This A " F then A c " F

A 1, A 2, ... " F then
�!

i=1 A i " F

5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we deÞne afunction. Before we consider the speciÞcs of how we deÞne aprob-
ability function or measure, letÕs consider the intuitive deÞnition of a function:

Function (intuitive def.) # a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us asY = f (X ) where f () is the function that maps
the values taken by X to Y . For example, we can have the functionY = X 2 (see Þgure
from class).

We are going to deÞne aprobability function which map sample spacesto the real line
(to numbers):

P r (S) : S $ R (10)

where P r (S) is a function, which we could have written f (S).

To be useful, we need some rules for how probability functions are deÞned (that is, not all
functions on sample spaces are probability functions). These rules are are called theaxioms
of probability (note that an axiom is a rule that we assume). There is some variation in
how these are presented, but we will present them as three axioms:

Axioms of Probability

1. For A % S, P r(A ) ! 0.

2. P r (S) = 1.

3. For A 1, A 2, ... " S, if A i&A j = ! (disjoint) for each i '= j : P r (
�!

i
A i) =

�!
i

Pr(A ).

These axioms are necessary for many of the logically consistent results built upon proba-
bility. Intuitively, we can think of these axioms as matching how we tend to think about

7

! (7)

F (8)

∅ ∈ F (9)

This A ∈ F then Ac ∈ F

A1,A2, ... ∈ F then
! !

i =1 Ai ∈ F

∅, {H }, {T}, {H, T } (10)

5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
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To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we deÞne afunction. Before we consider the speciÞcs of how we deÞne aprob-
ability function or measure, letÕs consider the intuitive deÞnition of a function:

Function (intuitive def.) # a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us asY = f (X ) where f () is the function that maps
the values taken by X to Y . For example, we can have the functionY = X 2 (see Þgure
from class).

We are going to deÞne aprobability function which map sample spacesto the real line
(to numbers):

P r (S) : S $ R (10)

where P r (S) is a function, which we could have written f (S).

To be useful, we need some rules for how probability functions are deÞned (that is, not all
functions on sample spaces are probability functions). These rules are are called theaxioms
of probability (note that an axiom is a rule that we assume). There is some variation in
how these are presented, but we will present them as three axioms:

Axioms of Probability

1. For A % S, P r(A ) ! 0.

2. P r (S) = 1.

3. For A 1, A 2, ... " S, if A i&A j = ! (disjoint) for each i '= j : P r (
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i
A i) =

�!
i

Pr(A ).

These axioms are necessary for many of the logically consistent results built upon proba-
bility. Intuitively, we can think of these axioms as matching how we tend to think about
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Functions

¥ Now that we have formalized the concept of a sample space, we 
need to deÞne what ÒprobabilityÓmeans 

¥ To do this, we need the concept of a mathematical function

¥ Function  (formally) - a binary relation between every element 
of a domain set to exactly one element of the codomain set

¥ Function  (informally) -?



Example of a function

X

Y

Y = X2



Probability functions
¥ Probability Function  - maps a Sigma Algebra of a sample to 

a subset of the reals:

¥ Not all such functions that map a Sigma Algebra to this subset 
are probability functions, only those that satisfy the following 
Axioms of Probability (where an axiom is a property assumed 
to be true):
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Probability functions on the reals

¥ In any realistic case, our true sample outcomes will be discrete

¥ However we often model cases using the real numbers as a 
sample space, which has nice properties and mathematical tools 
available that we can take leverage

¥ Example: we often use the real numbers as the sample space for 
an experiment where the sample outcome is human heights

¥ Two questions:

¥ What approximations are we making?  

¥ Why are these approximations reasonable?



The Sigma Field on the reals
¥ To deÞne a probability function, we need the appropriate Sigma 

Field on the reals

¥ Interestingly, we cannot use all of the subsets of the reals

¥ The problem is these subsets include Ònon-measurable setsÓ 
such that if they were included, we could not deÞne a 
probability measure

¥ It turns out the appropriate Sigma Field for the reals includes all 
open and closed intervals (where a and b may be any number)

¥ It seems like these should include all subsets of the reals, but 
they donÕt...

An important question to consider is what approximations we are making when approxi-
mating a discrete sample space such as human height? We actually, make two. The Þrst is
that the sample space does indeed contain a continuous set of values between the heights
we could observe (say 4Õ to 7Õ). The second is that we assume heights could actually take
any continuous value between−∞ and ∞. At Þrst glance, this latter assumption may
seem to be a poor one. However, the way we make this approximation work is by deÞning
a probability function (model) that places a very small probability on heights outside of
the range we can observe.

Now, before we take advantage of the mathematical tricks at our disposal when we use
a continuous sample space (approximation), we have to deal with some additional issues.
It turns out that segments of the real line are ÔcompactÕ and this introduces a number of
problems for deÞning probability functions (you can get an intuitive idea of what compact
means by considering that there are inÞnite number of points between any two points you
could deÞne on the real line). How we deal with these issues are actually the provence of
the Þeld of real analysis or, more speciÞcally, measure theory. We are therefore not going to
consider them in detail in this course and, beyond the discussion here, we will not discuss
measure theory again and it will not impact the concepts that we discuss.

The ÔproblemÕ with the real line for our purpose is that there are Ôtoo manyÕ subsets.
This can lead to strange intuitive (but not mathematical) contradictions, e.g. a small con-
tinuous three dimensional spaceR3 can be taken apart and put back together again into
a much larger space (without any spaces in between the pieces). Interestingly, this means
that the set of all subsets of the real line is therefore not the best approximation of how
we think about how we model reality with probability. To produce a set of R subsets that
we can use to approximate how we think about real systems, we will deÞne a set called a
sigma Þeld. For our case, the sigma Þeld contains the following subsets of the real line:

[a, b], (a, b], [a, b), (a, b) (4)

where a and b are any two constants. Note that that a square bracket means the inter-
val contains the value and a curved bracket means that the interval does not contain the
value but rather values that are inÞnitely close to the bracketed value. Now, it is hard
imagine that this subset of the real line would not include all subsets, but it does not.
Imagining what these un-included subsets Ôlook likeÕ is however not intuitive and we in
general do not speciÞcally describe them but prove that they exist. With a sigma Þeld in
hand, we can deÞne a Ômeasure spaceÕ which includes a sample spaceS (also represented as
Ω), a sigma ÞeldF , and a probability measureP r , which satisÞes the axioms of probability.

One last historical side note. The rigorous conceptualization of probability is not actu-
ally that old, arguably beginning with Kolmogorov in the 1930Õs (who deÞned the axioms
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Thoughts about what probability 
is modeling

¥ We are attempting to model the results of a non-ideal experiment 
to understand a system

¥ Such experiments include extensive amounts of uncontrolled 
aspects (important for the system!) that we usually cannot specify

¥ What we may be able to do is provide a reasonable model of how 
these uncontrolled aspects impact the results of the experiments

¥ More speciÞcally, we assume that the impact of the uncontrolled 
aspects are random but where certain outcomes are more 
probable than others (note the assumption!!) 

¥ This is what a probability function is built to model (= to provide 
the probability of random outcomes of an experiment)

¥ Note that while random is intuitive, itÕs a problematic concept... 



An essential concept: conditional 
probability (and independence)

¥ As well as having an intuitive sense of what it means for something we 
observe to be random (within deÞnable rules) we also have an intuitive 
sense about how the rules change once we observe speciÞc outcomes 
or assume certain possibility applies

¥ This intuition is captured in conditional probability

¥ This is the essential concept in any area of probabilistic modeling, where 
the concept of independence directly follows

¥ In fact, almost anything we are doing in statistics, machine learning, etc. is 
really attempting to identify or leverage conditional probabilities 

¥ As an example, we could consider the conditional probability that 
someone will be taller or shorter if they have a ÒTÓ at a particular 
position in the genome



Conditional probability

¥ We have an intuitive concept of conditional probability: the 
probability of an event, given another event has taken place

¥ We will formalize this using the following deÞnition (note that 
this is still a probability!!):

¥ While not obvious at Þrst glance, this is actually an intuitive 
deÞnition that matches our conception of conditional 
probability

of probability). This means that some of the architects of probability theory are still alive,
and one of them is here at Cornell: Eugene Dynkin (who is in his 90Õs). Dynkin (among
other accomplishments) proved a number of theorems and developed a number of impor-
tant methods (e.g. π-λ-systems) which are used to prove a number of important results
in basic probability. He is a great teacher and if you ever get the chance to take a course
from him, itÕs worth it (and you get a living connection to the beginning of probability as
we know it!).

S = ( −∞,∞) (5)

7 Conditional Probability

A critical concept in probability is the concept of conditional probability. Intuitively, we
can deÞne the conditional probability as Ôthe probability of an event, given that another
event has taken placeÕ. That is, this concept makes formal the case where an event that
has taken place provides us information that changes the probability of a future or focal
event. The formal deÞnition of the conditional probability of A i given A j is:

P r (A i |A j ) =
P r (A i

�
A j )

P r (A j )
(6)

At Þrst glance, this relationship does not seem very intuitive. LetÕs consider a quick
example that will make it clear why we deÞne conditional probability this way. LetÕs use
our Ôpaired coin ßipÕ whereP r { HH } = Pr { HT } = Pr { T H } = Pr { T T} = 0 .25. In this
case, we have the following:

H2nd T2nd

H1st HH HT
T1st T H T T

where we have the following probabilities:

H2nd T2nd

H1st P r (H1st ∩ H2nd) P r (H1st ∩ T2nd) P r (H1st )
T1st P r (T1st ∩ H2nd) P r (T1st ∩ T2nd) P r (T1st )

P r (H2nd) P r (T2nd)

where each entry of the last column reßects a sum of the rows and each entry of the bottom
rows are the sums or each column. Note that we also have the following relationships
P r (H1st ) = P r (HH ∪ HT ), P r (H2nd) = P r (HH ∪ T H ), P r (T1st ) = P r (T H ∪ T T), and
Pr (T2nd) = P r (HT ∪ T T) (work this out for yourself!). LetÕs now deÞne the following
probability model:
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An example of conditional prob.

¥ Consider the sample space of Òtwo coin ßipsÓ and the following 
probability model:
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An example of conditional prob.

¥ Intuitively, if we condition on the Þrst ßip being ÒHeadsÓ, we need 
to rescale the total to be one (to be a probability function):
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our Ôpaired coin ßipÕ whereP r { HH } = Pr { HT } = Pr { T H } = Pr { T T} = 0 .25. In this
case, we have the following:

H2nd T2nd

H1st HH HT
T1st T H T T

where we have the following probabilities:

H2nd T2nd

H1st P r (H1st # H2nd) P r (H1st # T2nd) P r (H1st )
T1st P r (T1st # H2nd) P r (T1st # T2nd) P r (T1st )

P r (H2nd) P r (T2nd)

where each entry of the last column reßects a sum of the rows and each entry of the bottom
rows are the sums or each column. Note that we also have the following relationships
P r (H1st ) = P r (HH $ HT ), P r (H2nd) = P r (HH $ T H ), P r (T1st ) = P r (T H $ T T), and
Pr (T2nd) = P r (HT $ T T) (work this out for yourself!). LetÕs now deÞne the following
probability model:
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H2nd T2nd

H1st 0.25 0.25 0.5
T1st 0.25 0.25 0.5

0.5 0.5

LetÕs consider the probability that our second ßip is a ÔHeadsÕ given that we know our Þrst
ßip is a ÔHeadsÕ. Note that ÔÞrst ßip is HeadsÕ isH1st = { HH ∪ HT } and the Ôsecond ßip
headsÕ isH2nd = { HH ∪ T H } . This conditional probability is therefore:

P r (H2nd |H1st ) =
P r (H2st

!
H1st )

P r (H1st )
=

P r (HH )
P r (HH ∪ HT )

=
0.25
0.5

= 0 .5 (7)

Here is an intuitive way to think about what is going on. If we know that the Þrst ßip
is a head, this limits the outcomes to{ HH, HT } (the Þrst row of the table). Note that
conditional probability conforms to the deÞnition of a probability function, so if we think
conceptually of deÞning the Þrst ßip to be ÔHeadsÕ we now dealing with a ÔnewÕ sample space
that contains two elements: S|H 1st

= { HH, HT } , i.e. our new sample space is the Þrst row
of the table. To conform to the second axiom we need to make the total probability of this
ÔnewÕ space be one (i.e.P r (S|H 1st

) = 1), which we can do by deÞningP r (HH |H1st ) = 0 .5
and P r (HT |H1st ) = 0 .5, i.e. after restricting ourselves to these two cases, we have to pick
one or the other and each is equally likely. Thus, the formula in (6) comes from making
sure the second axiom is satisÞed forP r (S|H 1st

), where we need to divide by the total
probability of the Þrst row in the original sample spacePr (HH ∪ HT ) = 0 .5 to rescale
the total probability of P r (HH ∪ HT |H1st ) to ÔoneÕ. This is what is happening in the
denominator. Thus, in our fair coin example, where the probability of ÔHeadsÕ or ÔTailsÕ is
0.5 on each ßip, the conditional probability of H2nd given H1st is 0.5.

8 Independence

The concept of independence also matches how we intuitively use probabilistic models.
Intuitively, if events are independent, then knowing that one of the events has happened
provides us no additional information for altering the probability that the second event will
happen, and vice versa. We can deÞne this concept directly from the concept of conditional
probability. If A i is independent ofA j , then we have:

P r (A i |A j ) = P r (A i ) (8)

While this result is intuitive, it produces a relationship that is less intuitive, speciÞcally:

P r (A i ∩ A j ) = P r (A i )P r (A j ) (9)

However, this follows from the deÞnition of conditional probability and independence (equa-
tions 5 and 7):

P r (A i |A j ) =
P r (A i

!
A j )

P r (A j )
=

P r (A i )P r (A j )
P r (A j )

= P r (A i ) (10)
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Independence

¥ The deÞnition of independence is another concept that is not 
particularly intuitive at Þrst glance, but it turns out it directly 
follows our intuition of what ÒindependenceÓ should mean and 
from the deÞnition of conditional probability

¥ SpeciÞcally, we intuitively think of two events as ÒindependentÓ if 
knowing that one event has happened does not change the 
probability of a second event happening

¥ i.e. the Þrst event provides provides us no insight into what will 
happen second



Independence
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Example of independence

¥ Consider the sample space of Òtwo coin ßipsÓ and the following 
probability model:

of probability). This means that some of the architects of probability theory are still alive,

and one of them is here at Cornell: Eugene Dynkin (who is in his 90’s). Dynkin (among

other accomplishments) proved a number of theorems and developed a number of impor-

tant methods (e.g. π-λ-systems) which are used to prove a number of important results

in basic probability. He is a great teacher and if you ever get the chance to take a course

from him, it’s worth it (and you get a living connection to the beginning of probability as

we know it!).

S = (!" , " ) (5)

7 Conditional Probability

A critical concept in probability is the concept of conditional probability. Intuitively, we

can define the conditional probability as ‘the probability of an event, given that another

event has taken place’. That is, this concept makes formal the case where an event that

has taken place provides us information that changes the probability of a future or focal

event. The formal definition of the conditional probability of Ai given Aj is:

P r (Ai |Aj ) =
Pr (Ai

!
Aj )

P r (Aj )
(6)

At first glance, this relationship does not seem very intuitive. Let’s consider a quick

example that will make it clear why we define conditional probability this way. Let’s use

our ‘paired coin flip’ where P r{HH } = Pr{HT } = Pr{T H } = Pr{T T} = 0.25. In this

case, we have the following:

H2nd T2nd

H1st HH HT
T1st T H T T

where we have the following probabilities:

H2nd T2nd

H1st P r (H1st # H2nd) P r (H1st # T2nd) Pr (H1st)

T1st P r (T1st # H2nd) P r (T1st # T2nd) Pr (T1st)

Pr (H2nd) P r (T2nd)

where each entry of the last column reflects a sum of the rows and each entry of the bottom

rows are the sums or each column. Note that we also have the following relationships

P r (H1st ) = P r (HH $ HT ), P r (H2nd) = Pr (HH $ T H ), Pr (T1st) = Pr (T H $ T T), and

P r (T2nd) = P r (HT $ T T) (work this out for yourself!). Let’s now define the following

probability model:
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To make this concept clearer, letÕs consider two probability models for Ôpaired coin ßipÕ
example. We will again write these probabilities out as follows:

H2nd T2nd

H1st Pr(H1st ! H2nd) P r (H1st ! T2nd) P r (H1st)
T1st Pr(T1st ! H2nd) P r (T1st ! T2nd) P r (t1st)

P r (H2nd) P r (T2nd)

For our fair coin probability model, letÕs again assign these probabilities as follows:

H2nd T2nd

H1st 0.25 0.25 0.5
T1st 0.25 0.25 0.5

0.5 0.5

In this model, H1st and H2nd are independent, i.e.P r (H1st ! H2nd) = P r (H1st)P r (H2nd)
(in fact, all of the possibilities we could consider in this model are independent). Next letÕs
consider the psuedo-fair coin example:

H2nd T2nd

H1st 0.4 0.1 0.5
T1st 0.1 0.4 0.5

0.5 0.5

In this model H1st and H2nd are not independent, i.e.P r (H1st! H2nd) "= P r (H1st)P r (H2nd)
and neither are the other possibilities considered. Intuitively, getting a ÔHeadÕ on the Þrst
ßip increases the probability of getting a ÔHeadÕ on the second (and similarly for ÔTailsÕ).
In this case, knowledge concerning one of the possibilities alters the probability of the next,
so it makes sense that they are not independent.

One Þnal thought before we leave the concept of independence. It is important to note that
disjoint events cannot beindependent. This follows from the third axiom of probability
and the deÞnition of independence. This actually also makes intuitive sense but perhaps
not at Þrst glance (see problem 1 on your Þrst homework, which will be handed out next
week).
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Example of non-independence

¥ Consider the sample space of Òtwo coin ßipsÓ and the following 
probability model:
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H1st 0.25 0.25 0.5
T1st 0.25 0.25 0.5

0.5 0.5

In this model, H1st and H2nd are independent, i.e.P r (H1st ! H2nd) = P r (H1st )P r (H2nd)
(in fact, all of the possibilities we could consider in this model are independent). Next letÕs
consider the psuedo-fair coin example:

H2nd T2nd

H1st 0.4 0.1 0.5
T1st 0.1 0.4 0.5

0.5 0.5

In this model H1st and H2nd are not independent, i.e.P r (H1st ! H2nd) "= P r (H1st )P r (H2nd)
and neither are the other possibilities considered. Intuitively, getting a ÔHeadÕ on the Þrst
ßip increases the probability of getting a ÔHeadÕ on the second (and similarly for ÔTailsÕ).
In this case, knowledge concerning one of the possibilities alters the probability of the next,
so it makes sense that they are not independent.

One Þnal thought before we leave the concept of independence. It is important to note that
disjoint events cannot beindependent. This follows from the third axiom of probability
and the deÞnition of independence. This actually also makes intuitive sense but perhaps
not at Þrst glance (see problem 1 on your Þrst homework, which will be handed out next
week).
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ThatÕs it for today

¥ Next lecture, we will introduce random variables, random vectors, 
and parameterized probability models


