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Announcements 1

¥ Registration updates / reminders:
¥ You must register for both the lecture and lab

¥ If you are in Ithaca and could not register previously, you
now register for the lecture and lab - register for either la
(you will go to the same computer lab regardless of your
registered lab)

¥ In Ithaca, undergrads register for 4830 / grads for 6830
¥ You may take the class for a grade, S/U | P/F, or Audit

¥ You are also welcome to sit in this class, but if you choos
do this and are able to register for the class please regis
for an OAuditO (note that we will grade any work you turi
In!)




Announcements 11

¥ Computer lab - FIRST LAB IS TODAY (!1):

¥ Regardless of your registration, computer labs will be ea
week, Thurs. 5-6PM

¥ If you have an unavoidable conRict with this time, please
contact me ASAP

¥ In Ithaca the lab will be in MNLB30A (Mann Library
Basement)

¥ AtWCMC, the lab will be in the Dept. of Genetic Med.
conference (= lecture)

¥ In Ithaca, please bring your laptop this week (you will like
not have to in subsequent weeks), at WCMC bring your
laptop every week (!!)




Announcements Il|

¥ Class ofbce hours:

Jason - Thurs. 3-5PM in 101 Biotech Suite AND Dept. Genetic Med.
conference (BOTH Ithaca and Weill)

Amanda - Tues. 3-5PM in 343 Weill Hall (Ithaca only)

Jin - no ofPce hours

Unofbcial ofPce hours can be scheduled by appointment (1)
These will start NEXT week = NO ofPce hours this week!!

¥ Class email listserMEZEY-QUANTGENOME-L @cornell.edu

¥ email Amanda to get on (or off) listg246@cornell.edu

¥ Test message will be sent tomorrow afternoon

¥ Class websitdattp://mezeylab.cb.bscb.cornell.é¢du
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Summary of lecture 2:
Introduction to probability basic

¥ Last lecture, we provided a broad introduction to the peld
guantitative genomics and genetnosh is concerned with
modelin@gnd thediscovergf relationships between genome:
(genotypes) and phenotypes

¥ In this class, we will be concerned with the most basic
problem of the Peld: how to identify genotypes where
differences among individual genomes produce difference
iIndividual phenotypes (e.g. genetic association studies)

¥ The modeling framework for the Peld is developed from tr
Pelds of probability and statistics




DePnitions: Probabillity / Statisti

¥ Probability (non-technical def) - a mathematical framework
for modeling under uncertainty

¥ Statistics  (non-technical def) - a system for interpreting data
for the purposes of prediction and decision making given
uncertainty

These frameworks are particularly appropriate for modeling gent
systems, since we are missing information concerning the comp
of components and relationships among components that deter
genome-phenotype relationships
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Starting point: a system

¥ System - a process, an object, etc. which we would like to
know something about

¥ Example: Genetic contribution to height

Genomé E— Heighﬂ

Al —» |Taller (on average)

o {

T| —» |Shorter (on average




Starting point: a system

¥ System - a process, an object, etc. which we would like to

know something about

¥ Examples: (1) coin, (2) heights in a population

Coin - same amount of metal on both side

S?

Heights - what Is the average height in the ’JS?




Experiments (general)

¥ To learn about a system, we generally pose a specibc question
that suggests an experiment, where we can extrapolate a
property of the system from the results of the experiment

¥ Examples of OidealO experiments (System / Experiment):

¥ SNP contribution to height / directly manipulate A ->T
keeping all other genetic, environmental, etc. components the
same and observe result on height

¥ Coin/ cut coin in half, melt and measure the volume of each
half

¥ Height / measure the height of every person in the US




Experiments (general)

¥ To learn about a system, we generally pose a specibc question

that suggests an experiment,

property of the system from t

¥ Examples of Onon-idealO ex

where we can extrapolate a
ne results of the experiment

periments (System / Experiment):

¥ SNP contribution to height / measure heights of individuals
that have an A and individuals that have aT

¥ Coin / RBip the coin and observe OHeadsO and OTailsO

¥ Height / measure some people in the US




Experiments and samples

¥ Experiment - a manipulation or measurement of a system
that produces an outcome we can observe

¥ Experimental trial - ohe Iinstance of an experiment
¥ Sample outcome - a possible outcome of the experiment
¥ Sample - the results of one or more experimental trials
¥ Example (Experiment / Sample outcomes):
¥ Coin Rip / OHeadsO or OTailsO
¥ Two coin Bips / HH, HT, TH, TT
¥ Measure heights in this class / 50, 50300,503.5, ...




Modeling the results of (non-ide:
experiments

¥ Mathematics (while not the only approach!) provides a particularly valuable
foundation for describing or modeling a system or the outcomes of an experimen

¥ The reason is that a considerable amount of mathematics is constructed to provic
a good representation of how we think about the world in a way that matches our
Intuition
Once constructed, we can use this modeling approach to formalize our intuition i
a manner that has currency for others and develop deeper understanding

In general, mathematics useful for modeling (including probability) can be develoj
from foundations developed set theory

A lot of assumptions, calleakiomsare at the foundation of set theory put in place
so that set theory produces logical constructions that match our intuition (e.g. the

ZFC axioms)

There is no perfect set of axioms for all mathematics (e.g. see GodelOs
Incompleteness theorems)




Sets / Set Operations / DebPnitio

¥ Set - any collection, group, or conglomerate

¥ Element - a member of a set

¥ Set Operations:

Union (!) " an operator on sets which produces a single set containing all elemen
of the sets.

Intersection (#) " an operator on sets which produces a single set containing all el
ments common to all of the sets.

¥ Important DePnitions:

Element of ($) " an object within a set, e.g. H $ {H, T}
Subset (%) " a set that is contained within another set, e.g. {H} % {H, T}

Complement (A " the set containing all other elements of a set other thanA, e.g.

{H}*=A{T}
Disjoint Sets " sets with no elements in common.

: Empty Set () = the set with no elements (the empty set is uniqut
¥ A SpeCIaI Set'and is sometimes represented a$ }).




Some Special Sets and Inbni

¥ The following sets have properties that align with our intuitive
conception about how we represent and use groups

¥ The Natural Numbers and the Integers:
N=1{123,..}

Z=1{..8&3&28&10123,..}
¥ The Reals:
R={" 0(}

¥ Note that these sets are inPnite (although they represent two
different OsizesO of inbnite!), where we often make use of the
following symbols:

&) >x> )




Sample Spaces / Sigma Algel

¥ Sample Space (I ) - set comprising all possible outcomes associated with an experiment
¥ Examples (Experiment / Sample Space):
¥ OsSingle coin RipO / {H, T}
¥  OTwo coin RipsO / {HH, HT,TH,TT}
¥ OMeasure HeightsO / {50, 50300, 503.500, ...}
¥ Events - a subset of the sample space
¥ Sigma Algebra (JF) - a collection of events (subsets) lof  of interest V\_/itlh the following
three properties1.!"™ F ,2.A" F then A" F 3. A4;,Ay,..." Fthen ., A" F
Note that we are interested in a particular Sigma Algebra for each sample space...
¥ Examples (Sample Space / Sigma Algebra):
¥ HT O{H}{TH{HT}
¥ {HH,HT,TH,TT}/ see board

¥ {50,50300,503.500, ...}/ letOs table this one for the moment




Functions

¥ Now that we have formalized the concept of a sample space,
need to debne what OprobabilityOmeans

¥ To do this, we need the concept of a mathematical function

¥ Function (formally) - a binary relation between every element
of a domain set to exactly one element of the codomain set

¥ Function (informally) - 72




Example of a function

Y = X2




Probability functions

¥ Probabllity Function - maps a Sigma Algebra of a sample tc
a subset of the reals:

Pr(F): F $ [O,1]

¥ Not all such functions that map a Sigma Algebra to this subset
are probability functions, only those that satisfy the following
Axioms of Probability (where an axiom is a property assumed
to be true):

1. For A %!  Pr(A)! 0
2. Pr(l)=1

' [}
3. For Ay, Ap,..." |, if Aj&A; = ! (disjoint) for each i = j: Pr( | Aj)=




Probability functions on the rea

¥ In any realistic case, our true sample outcomes will be discret

¥ However we often model cases using the real numbers as a
sample space, which has nice properties and mathematical to
avallable that we can take leverage

¥ Example: we often use the real numbers as the sample space
an experiment where the sample outcome is human heights

¥ Two questions:
¥ What approximations are we making?

¥ Why are these approximations reasonable?




The Sigma Fleld on the reals

¥ To debne a probability function, we need the appropriate Sigm
Field on the reals

¥ Interestingly, we cannot use all of the subsets of the reals

¥ The problem is these subsets include Onon-measurable setsC
such that if they were included, we could not debPne a
probability measure

¥ It turns out the appropriate Sigma Field for the reals includes &
open and closed intervals (wheasandb may be any number)

[a, 1, (a, b, [a, D), (a, b)

¥ It seems like these should include all subsets of the reals, but
they donOit...




Thoughts about what probabilit

IS modeling

¥ We are attempting to model the results of a non-ideal experiment
to understand a system

¥ Such experiments include extensive amounts of uncontrolled
aspects (Important for the system!) that we usually cannot speci

¥ What we may be able to do is provide a reasonable model of ho

these uncontro

¥ More specibca
aspects areano

led aspects impact the results of the experiments

ly, we assume that the impact of the uncontrolled
onbut where certain outcomes are more

probable than others (note the assumption!!)

¥ This is what a probability function is built to model (= to provide
the probability of random outcomes of an experiment)

¥ Note that whilerandonis intuitive, itDs a problematic concept...




An essential concept: condition
probability (and independence

¥ As well as having an intuitive sense of what it means for something we
observe to be random (within dePnable rules) we also have an intuitive
sense about how the rules change once we observe specibc outcome
or assume certain possibility applies

¥ This intuition is captured igonditional probability

¥ This Is the essential concept in any area of probabilistic modeling, whe
the concept ofindependenadrectly follows

¥ In fact, almost anything we are doing in statistics, machine learning, etc
really attempting to identify or leverage conditional probabilities

¥ As an example, we could consider the conditional probability that
someone will be taller or shorter if they have aOTO at a particular
position in the genome




Conditional probability

¥ We have an intuitive concept aonditional probabilitye
probability of an event, given another event has taken place

¥ We will formalize this using the following debnition (note that
this is still a probability!!):

The formal depPnition of the conditional probability of Aj given A; is:

Pr(AiNA;)

Pr(Ai|Aj): PI’(Aj)

¥ While not obvious at brst glance, this is actually an intuitive
debnition that matches our conception of conditional
probability




An example of conditional prok

¥ Consider the sample space of Otwo coin RipsO and the following
probability modelPr{HH } = Pr{HT} = Pr{TH} =Pr{TT} = 0.25

H2nd T2nd
HH | HT

TH | TT

T2nd
Pr(Hist # Hong) | Pr(Hist # Tond)

Pr(Tist# Hong) | Pr(Tist # Tong)
Pr("'Qnd) Pr(TQnd)

Pr(Hist) = Pr(HH UHT), Pr(Hong) = Pr(HH UTH)
Pr(Tist) = Pr(TH $TT), Pr(Teng) = Pr(HT $TT)




An example of conditional prok

¥ Intuitively, if we condition on the brst Rip being OHeadsO, we nee
to rescale the total to be one (to be a probability function):

H2nd T2nd
HH | HT

TT

T2nd

0.5 |

a0

Pr(Hast [1H1st) Pr(HH) 0.25
Pr(Hang[H1st) = = = =05
"(HznalH1s) Pr(Hist) Pr(HH ! HT) 05




Independence

¥ The debnition ofndependenas another concept that is not
particularly intuitive at brst glance, but it turns out it directly
follows our intuition of what OindependenceO should mean and
from the debnition of conditional probability

¥ Specibcally, we intuitively think of two events as OindependentO
knowing that one event has happened does not change the
probability of a second event happening

¥ i.e. the brst event provides provides us no insight into what will
happen second




Independence

¥ This requires that we debne independence as follows:

If A, Is independent ofA ;, then we have:
Pr(AilA;)= Pr(A;)

¥ Why is this? It follows from the dePnition of conditional prob.:

PI’(Ai! Aj) B PI‘(Ai)PI’(Aj)

Pr(Aj) Pr(Aj)

Pr(AilAj) = = Pr(Aj)

¥ This in turn produces the following relation for independent
events:

PI’(Ai ! Aj) = PI‘(Ai)PI‘(Aj)




Example of independence

¥ Consider the sample space of Otwo coin RipsO and the following
probability modelPr{HH } = Pr{HT} = Pr{TH} =Pr{TT} = 0.25

H 2nd

T2nd

Pr(Hist # Hong)

Pr(Hist # Tong) | Pr(Hist)

Pr(Tist # Hang)

Pr(Tist # Tond) | Pr(Tist)

H 2nd

T2nd

0.25

0.25

0.5

0.25

0.25

0.5

0.5

0.5

In this model, Hst and Hong are independent, i.e.Pr(Hst "Hong) = Pr(H 13t)Pr(H2nd)_




Example of non-independenc

¥ Consider the sample space of Otwo coin RipsO and the following
probability model:

H 2nd T2nd
Pr(Hist # Hand) | Pr(Hist # Tond)
Pr(Tist # Hong) | Pr(Tist # Tond)
Pr (Tgnd )

H2nd T2nd
04 | 0.1
0.1 0.4
0.5 | 0.5

In this model H 15t and Hong are not independent, i.e.Pr(Hist! Hong) = Pr(H1st)Pr(Hong)




ThatOs it for today

¥ Next lecture, we will introduce random variables, random vectors
and parameterized probability models




