BTRY 4830/6830: Quantitative Genomics and Genetics

Lecture 5: Parameterized probability models, inference, samples, estimators

Jason Mezey
jgm45@cornell.edu
Sept. 9, 2014 (T) 8:40-9:55
Announcements

• Reminder: two supplemental readings posted
• Reminder: Homework #1 was due 11:59PM last night (!!)
• We will have this graded one week from today
• Homework #2 will be posted tomorrow (I will send email announcement)
Summary of lecture 5

• Last lecture, we discussed random vectors and functions that take both random variables AND probability models as input to produce useful “summary” (and more!) outputs useful for random variables / probability models in general (expectations, variances)

• In this lecture, we will introduce specific probability models with the concept of parameterized probability distributions, where we also begin our discussion of inference, the concept of a sample (and i.i.d.), and the concept of an estimator
Conceptual Overview

- System
- Experiment
- Question
- Sample
- Inference
- Prob. Models
- Statistics
- Assumptions
Random Variables

\[X = x, \ Pr(X) \]

- \(\mathcal{E}(\Omega) \)
- \(X(\Omega) \)
- \(\Omega \)
- \(\mathcal{F} \)
- \(\Pr(\mathcal{F}) \)

Experiment (Sample Space) (Sigma Algebra)
Probability models I

- We have defined $\Pr(X)$, a probability model on a random variable, which technically we produce by defining $\Pr(\mathcal{F})$ and $X(\Omega)$
- So far, we have considered such probability models without defining them explicitly (except for a illustrative few examples)
- To define an explicit model for a given system / experiment we are going to assume that there is a “true” probability model, that is a consequence of the experiment that produces sample outcomes
- We place “true” in quotes since the defining a single true probability model for a given case could only really be accomplished if we knew every single detail about the system and experiment
- In practice, we therefore assume that the true probability distribution is within a restricted family of probability distributions, where we are satisfied if the true probability distribution in the family describes the results of our experiment pretty well / seems reasonable given our assumptions
In short, we therefore start a statistical investigation assuming that there is a single true probability model that correctly describes the possible outcomes of our experiment.

In general, the starting point of a statistical investigation is to make assumptions about the form of this probability model.

More specifically, a convenient assumption is to assume our true probability model is a specific model in a family of distributions that can be described with a compact equation.

This is often done by defining equations indexed by parameters.
Probability models III

- **Parameter** - a constant(s) θ which indexes a probability model belonging to a family of models Θ such that $\theta \in \Theta$

- Each value of the parameter (or combination of values if there is more than on parameter) defines a different probability model: $\Pr(X)$

- We assume one such parameter value(s) is the true model

- The advantage of this approach is this has reduced the problem of using the sample to answer a broad question to the problem of using a sample to make an educated guess at the value of the parameter(s)

- Remember that the foundation of such an approach is still an assumption about the properties of the sample outcomes, the experiment, and the system of interest (!!!)
Discrete parameterized examples

- Consider the probability model for the one coin flip experiment / number of tails.

- This is the Bernoulli distribution with parameter $\theta = p$ (what does p represent!??) where $\Theta = [0, 1]$

- We can write this $X \sim \text{Bern}(p)$ and this family of probability models has the following form:

$$Pr(X = x|p) = P_X(x|p) = p^x(1 - p)^{1-x}$$

- For the experiment of n coin flips / number of tails, we can assume the Binomial distribution $X \sim \text{Bin}(n, p)$:

$$Pr(X = x|n, p) = P_X(x|n, p) = \binom{n}{x} p^x(1 - p)^{n-x}$$

- There are many other discrete examples: hypergeometric, Poisson, etc.
Continuous parameterized examples

- Consider the measure heights experiment (reals as approximation to the sample space) / identity random variable

- For this example we can use the family of normal distributions that are parameterized by $\theta = [\mu, \sigma^2]$ (what do these parameters represent!?) with the following possible values: $\Theta_\mu = (-\infty, \infty), \Theta_{\sigma^2} = [0, \infty)$

- We often write this as $X \sim N(\mu, \sigma^2)$ and the equation has the following form:

$$Pr(X = x|\mu, \sigma^2) = f_X(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- There are many other continuous examples: uniform, exponential, etc.
Example for random vectors

- Since random vectors are the generalization of r.v.’s, we similarly can define parameterized probability models for random vectors.

- As an example, if we consider an experiment where we measure “height” and “weight” and we take the 2-D reals as the approximate sample space (vector identity function), we could assume the bivariate normal family of probability models:

\[f_{X}(x|\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho}}exp\left[-\frac{1}{2(1-\rho^2)}\left(\frac{(x_1 - \mu_1)^2}{2\sigma_1^2} - \frac{2\rho(x_1 - \mu_1)(x_2 - \mu_2)}{\sigma_1\sigma_2} + \frac{(x_2 - \mu_1)^2}{2\sigma_2^2}\right)\right] \]
Introduction to inference I

• Recall that our eventual goal is to use a sample (generated by an experiment) to provide an answer to a question (about a system)

• So far, we have set up the mathematical foundation that we need to accomplish this goal in a probability / statistics setting (although note we have not yet defined a sample!!)

• Specifically, we have defined formal components of our framework and made assumptions that have reduced the scope of the problem

• With these components and assumptions in place, we are almost ready to perform *inference*, which will accomplish our goal
Introduction to inference II

• **Inference** - the process of reaching a conclusion about the true probability distribution (from an assumed family probability distributions, indexed by the value of parameter(s)) on the basis of a sample

• There are two major types of inference we will consider in this course: *estimation* and *hypothesis testing*

• Before we get to these specific forms of inference, we need to formally define: *samples*, *sample probability distributions* (or sampling distributions), *statistics*, *statistic probability distributions* (or statistic sampling distributions)
Samples I

- Recall that we have defined experiments (= experimental trials) in a probability / statistics setting where these involve observing individuals from a population or the results of a manipulation.

- We have defined the possible outcome of an experimental trial, i.e. the sample space Ω.

- We have also defined a random variable $X(\Omega)$, where the random variable maps sample outcomes to numbers, the quantities in which we are ultimately interested.

- Since we have also defined a probability model $Pr(X)$, we have shifted our focus from the sample space to the random variable.
The values taken by X are numbers:

This concept is often introduced to us as the probability function from a set X. To do this, we define a function F_r which maps sets to the real numbers. For example, we can have the function $F_r = \mathbb{1}_{H,T}$ where r is the function that maps a sample to the real line.

Random Variable

$X = x$, $Pr(X)$

Sample of size n

$[X_1 = x_1, ..., X_n = x_n]$, $Pr([X_1 = x_1, ..., X_n = x_n])$

Sampling Distribution

$X \sim \mathbb{1}_{H,T}$

Experiment

$\mathcal{E}(\Omega)$

Sample Space

Ω

Sigma Algebra

\mathcal{F}

Probability

$Pr(\mathcal{F})$
Samples II

- **Sample** - repeated observations of a random variable X, generated by experimental trials

- We will consider samples that result from n experimental trials (what would be the ideal $n = \text{ideal experiment}$?)

- We already have the formalism to represent a sample of size n, specifically this is a random vector:

 $$[X = x] = [X_1 = x_1, \ldots, X_n = x_n]$$

- As an example, for our two coin flip experiment / number of tails r.v., we could perform $n=3$ experimental trials, which would produce a sample = random vector with three elements
Samples III

• Note that since we have defined (or more accurately induced!) a probability distribution \(\Pr(X) \) on our random variable, this means we have induced a probability distribution on the sample (!!):

\[
Pr(X = x) = P_X(x) \text{ or } f_X(x) = \Pr(X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n)
\]

• This is the sample probability distribution or sampling distribution (often called the joint sampling distribution)

• While samples could take a variety of forms, we generally assume that each sample has the same form, such that they are identically distributed:

\[
Pr(X_1 = x_1) = Pr(X_2 = x_2) = \ldots = Pr(X_n = x_n)
\]

• We also generally assume that each sample is independent of all other samples:

\[
Pr(X = x) = Pr(X_1 = x_1)Pr(X_2 = x_2)\ldots Pr(X_n = x_n)
\]

• If both of these assumptions hold, than the sample is independent and identically distributed, which we abbreviate as i.i.d.

• Technical note: regardless of the size of \(n \), there is a sampling distribution although as \(n \to \infty \) this becomes a probability distribution that only assigns a non-zero value (one!) to only the entire sample space element of the sigma algebra.
Example of sampling distributions

- As an example, consider our height experiment (reals as approximate sample space) / normal probability model (with true but unknown parameters $\theta = [\mu, \sigma^2]$ / identity random variable.

- If we assume an i.i.d sample, each sample $X_i = x_i$ has a normal distribution with parameters $\theta = [\mu, \sigma^2]$ and each is independent of all other $X_i = x_i$.

- For example, the sampling distribution for an i.i.d sample of $n = 2$ is:
Samples IV

• It is important to keep in mind, that while we have made assumptions such that we can define the joint probability distribution of (all) possible samples that could be generated from \(n \) experimental trials, in practice we only observe one set of trials, i.e. one sample

• For example, for our one coin flip experiment / number of tails r.v., we could produce a sample of \(n = 10 \) experimental trials, which might look like:

\[
x = [1, 1, 0, 1, 0, 0, 0, 1, 1, 0]
\]

• As another example, for our measure heights / identity r.v., we could produce a sample of \(n=10 \) experimental trials, which might look like:

\[
x = [-2.3, 0.5, 3.7, 1.2, -2.1, 1.5, -0.2, -0.8, -1.3, -0.1]
\]

• In each of these cases, we would like to use these samples to perform inference (i.e. say something about our parameter of the assumed probability model)

• Using the entire sample is unwieldy, so we do this by defining a statistic
Statistics I

- **Statistic** - a function on a sample

- Note that a statistic T is a function that takes a vector (a sample) as an input and returns a value (or vector):

 $$T(x) = T(x_1, x_2, ..., x_n) = t$$

- For example, one possible statistic is the mean of a sample:

 $$T(x) = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- It is critical to realize that, just as a probability model on X induces a probability distribution on a sample, since a statistic is a function on the sample, this induces a probability model on the statistic: the **statistic probability distribution** or the **sampling distribution** of the statistic (!!)
To use sample spaces in probability we need a way to map these sets to the real numbers. This concept is often introduced to us as the intuitive definition of a function: a mathematical operator that takes an input and produces an output. For example, we can have the function $T(X), Pr(T(X))$ which maps a sample to its statistic.

A random variable X can be seen as a function $X(\Omega)$ from the sample space Ω to the real numbers. The sampling distribution $Pr(X)$ gives the probability of each possible value of X. The statistic $T(X)$ and its distribution $Pr(T(X))$ are derived from the sample space and the random variable. The MLE $\hat{\theta}$ is an estimator of the parameter θ, where $\hat{\theta}$ is chosen to maximize the likelihood of the data x.

The diagram shows the relationship between the experiment $\mathcal{E}(\Omega)$, the sample space Ω, the random variable X, the statistic $T(X)$, and the sampling distribution $Pr(T(X))$.
Statistics II

- As an example, consider our height experiment (reals as approximate sample space) / normal probability model (with true but unknown parameters $\theta = [\mu, \sigma^2]$) / identity random variable.

- If we calculate the following statistic:

$$T(x) = \frac{1}{n} \sum_{i=1}^{n} x_i$$

what is $\Pr(T(X))$?

- Are the distributions of $X_i = x_i$ and $\Pr(T(X))$ always the same?
Statistics and estimators I

- Recall for the purposes of inference, we would like to use a sample to say something about the specific parameter value (of the assumed) family or probability models that could describe our sample space.

- Said another way, we are interested in using the sample to determine the “true” parameter value that describes the outcomes of our experiment.

- An approach for accomplishing this goal is to define our statistic in a way that it will allow us to say something about the true parameter value.

- In such a case, our statistic is an estimator of the parameter: \(T(x) = \hat{\theta} \).

- There are many ways to define estimators (we will focus on maximum likelihood estimators in this course).

- Each estimator has different properties and there is no perfect estimator.
That’s it for today

- Reminder (!!) Amanda has office hours today (please attend if additional discussion of these concepts would be helpful)
- Next lecture, we will introduce likelihood and maximum likelihood estimators