Lecture 5: Parameterized probability models, inference, samples, statistics

Jason Mezey
jgm45@cornell.edu
Feb. 11, 2016 (Th) 8:40-9:55
Announcements

- Computer lab today (!!):
 - Ithaca 5-6PM Mann B30A
 - NYC 4-5PM BB-204C

- NYC lecture location this coming Tues.: Weill-Greenberg 2nd fl A

- Homework #2 - was posted Tues. (!!), due Feb. 15 (11:59PM)!!

- Homework #1 - will be graded and available in class this coming Tues. (note that a key has been posted)
Summary of lecture 5

- Last lecture, we discussed functionals take both random variables AND probability models as input to produce useful “summary” (and more!) outputs useful for random variables / probability models in general (expectations, variances)

- In this lecture, we will continue our discussion of such functionals and introduce specific probability models with the concept of parameterized probability distributions, where we also begin our discussion of inference, the concept of a sample (and i.i.d.), and the concept of a statistic
Conceptual Overview

System

Experiment

Question

Sample

Inference

Prob. Models

Statistics

Assumptions
Review

- **Experiment** - a manipulation or measurement of a system that produces an outcome we can observe
- **Sample Space** (Ω) - set comprising all possible outcomes associated with an experiment
- **Sigma Algebra** or **Sigma Field** (\mathcal{F}) - a collection of events (subsets) of the sample space of interest
- **Probability Measure (=Function)** - maps a Sigma Algebra of a sample to a subset of the reals
- **Random Vector** (Variable) - (measurable) function on a sample space
- **Probability Distribution Function / Cumulative Distribution Function (pdf / cdf)** - probability mass (discrete) or density (continuous) functions that describes the probability distribution of a discrete OR continuous random variable
- **Expectations and Variances (Covariances)** - functionals that input a random vector and probability measure then output an informative scalar, vector, or matrix
This concept is often introduced to us as output. Function \(X \) from class \(u \). The values taken by function \(X \).

To use sample spaces in probability, we need a way to map these sets to the real numbers.
Algebra of expectations and variances

- If we consider a transformation on X (a function on the random variable but not on the probabilities directly!), recall that this can result in a different probability distribution for Y and therefore different expectations, variances, etc. for Y as well.

- We will consider two types of transformations on random variables and the result on expectation and variances: sums $Y = X_1 + X_2 + \ldots$ and $Y = a + bX_1$ where a and b are constants.

- For example, for sums, $Y = X_1 + X_2$ we have the following relationships:

 $$E(Y) = E(X_1 + X_2) = EX_1 + EX_2$$

 $$\text{Var}(Y) = \text{Var}(X_1 + X_2) = \text{Var}X_1 + \text{Var}X_2 + 2\text{Cov}(X_1, X_2)$$

- As another example, for $Y = X_1 + X_2 + X_3$ we have:

 $$E(Y) = E(X_1 + X_2 + X_3) = EX_1 + EX_2 + EX_3$$

 $$\text{Var}(Y) = \text{Var}(X_1 + X_2 + X_3) = \text{Var}X_1 + \text{Var}X_2 + \text{Var}X_3 + 2\text{Cov}(X_1, X_2) + 2\text{Cov}(X_1, X_3) + 2\text{Cov}(X_2, X_3)$$
Algebra of expectations and variances

- For the transformation $Y = a + bX$ we obtain the same relationships for (univariate) random variables and random vectors $Y = a + bX$.

- For example, for a vector with two elements $Y = a + bX$:

 $Y = [Y_1, Y_2] = [a + bX_1, a + bX_2]$

 $EY = E[Y_1, Y_2] = [a + bEX_1, a + bEX_2]$

 $\text{Var}Y = \text{Var}[Y_1, Y_2] = b^2 \text{Var}X = [b^2 \text{Var}X_1, b^2 \text{Var}X_2]$

- Finally, note that if we were to take the covariance (or correlation) of two random variables Y_1 and Y_2 with the relationship:

 $Y_1 = a_1 + b_1X_1$, $Y_2 = a_2 + b_2X_2$

 $\text{Cov}(Y_1, Y_2) = b_1b_2\text{Cov}(X_1, X_2)$

 $\text{Corr}(Y_1, Y_2) = \text{Corr}(X_1, X_2)$
Probability models I

- We have defined $\Pr(X)$, a probability model on a random variable, which technically we produce by defining $\Pr(\mathcal{F})$ and $X(\Omega)$

- So far, we have considered such probability models without defining them explicitly (except for a illustrative few examples)

- To define an explicit model for a given system / experiment we are going to assume that there is a “true” probability model, that is a consequence of the experiment that produces sample outcomes

- We place “true” in quotes since the defining a single true probability model for a given case could only really be accomplished if we knew every single detail about the system and experiment (would a probability model be useful in this case?)

- In practice, we therefore assume that the true probability distribution is within a restricted family of probability distributions, where we are satisfied if the true probability distribution in the family describes the results of our experiment pretty well / seems reasonable given our assumptions
In short, we therefore start a statistical investigation assuming that there is a single true probability model that correctly describes the possible experiment outcomes given the uncertainty in our system.

In general, the starting point of a statistical investigation is to make assumptions about the form of this probability model.

More specifically, a convenient assumption is to assume our true probability model is a specific model in a family of distributions that can be described with a compact equation.

This is often done by defining equations indexed by parameters.
• **Parameter** - a constant(s) \(\theta \) which indexes a probability model belonging to a family of models \(\Theta \) such that \(\theta \in \Theta \)

• Each value of the parameter (or combination of values if there is more than one parameter) defines a different probability model: \(\Pr(X) \)

• We assume one such parameter value(s) is the true model

• The advantage of this approach is this has reduced the problem of using the sample to answer a broad question to the problem of using a sample to make an educated guess at the value of the parameter(s)

• Remember that the foundation of such an approach is still an assumption about the properties of the sample outcomes, the experiment, and the system of interest (!!!)
Discrete parameterized examples

- Consider the probability model for the one coin flip experiment / number of tails.
- This is the Bernoulli distribution with parameter \(\theta = p \) (what does \(p \) represent!?) where \(\Theta = [0, 1] \)
- We can write this \(X \sim \text{Bern}(p) \) and this family of probability models has the following form:

\[
Pr(X = x|p) = P_X(x|p) = p^x(1 - p)^{1-x}
\]

- For the experiment of \(n \) coin flips / number of tails, we can assume the Binomial distribution \(X \sim \text{Bin}(n, p) \):

\[
Pr(X = x|n, p) = P_X(x|n, p) = \binom{n}{x}p^x(1 - p)^{n-x}
\]

\[
\binom{n}{x} = \frac{n!}{x!(n-x)!}
\]

\[
n! = n \times (n - 1) \times (n - 2) \times \ldots \times 1
\]

- There are many other discrete examples: hypergeometric, Poisson, etc.
Continuous parameterized examples

• Consider the measure heights experiment (reals as approximation to the sample space) / identity random variable

• For this example we can use the family of normal distributions that are parameterized by \(\theta \in [\mu, \sigma^2] \) (what do these parameters represent!?) with the following possible values: \(\Theta_\mu = (-\infty, \infty) \), \(\Theta_{\sigma^2} = [0, \infty) \)

• We often write this as \(X \sim N(\mu, \sigma^2) \) and the equation has the following form:

\[
Pr \ X \ x \mid \mu, \sigma^2 \quad f_X \ x \mid \mu, \sigma^2 \quad \frac{1}{\sqrt{\pi \sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}
\]

• There are many other continuous examples: uniform, exponential, etc.
Example for random vectors

- Since random vectors are the generalization of r.v.'s, we similarly can define parameterized probability models for random vectors.

- As an example, if we consider an experiment where we measure "height" and "weight" and we take the 2-D reals as the approximate sample space (vector identity function), we could assume the bivariate normal family of probability models:

\[
f_x(x|\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho}} \exp\left[-\frac{1}{2(1-\rho^2)} \left(\frac{(x_1 - \mu_1)^2}{2\sigma_1^2} - \frac{2\rho(x_1 - \mu_1)(x_2 - \mu_2)}{\sigma_1\sigma_2} + \frac{(x_2 - \mu_2)^2}{2\sigma_2^2} \right) \right]
\]
Recall that our eventual goal is to use a sample (generated by an experiment) to provide an answer to a question (about a system).

So far, we have set up the mathematical foundation that we need to accomplish this goal in a probability / statistics setting (although note we have not yet provided formalism for a sample!!)

Specifically, we have defined formal components of our framework and made assumptions that have reduced the scope of the problem.

With these components and assumptions in place, we are almost ready to perform inference, which will accomplish our goal.
Introduction to inference II

• **Inference** - the process of reaching a conclusion about the true probability distribution (from an assumed family probability distributions, indexed by the value of parameter(s)) on the basis of a sample

• There are two major types of inference we will consider in this course: estimation and hypothesis testing

• Before we get to these specific forms of inference, we need to formally define: samples, sample probability distributions (or sampling distributions), statistics, statistic probability distributions (or statistic sampling distributions)
Samples I

- Recall that we have defined experiments (= experimental trials) in a probability / statistics setting where these involve observing individuals from a population or the results of a manipulation.

- We have defined the possible outcome of an experimental trial, i.e. the sample space Ω.

- We have also defined a random variable X, where the random variable maps sample outcomes to numbers, the quantities in which we are ultimately interested.

- Since we have also defined a probability model $Pr(X)$, we have shifted our focus from the sample space to the random variable.
To use sample spaces in probability, we need a way to map these sets to the real numbers.

A function F to the real line (\mathbb{R}) is the function that maps \mathcal{S} to \mathbb{R}.

This concept is often introduced to us as a mathematical operator that takes an input and produces an output.

Before we consider the specifics of how we define a probability function F, then F (intuitive def.)

F is defined as $F = \frac{X}{2}$,

For example, we can have the function $F = \frac{X}{2}$.

Experiment X, \mathcal{F}, \mathbb{R}

$X(\omega), \omega \in \Omega$

(Sample Space) (Sigma Algebra)

$X = x, Pr(X)$

X \times

Random Variable

$Pr(\mathcal{F})$
Samples

Sample of size n

$[X_1 = x_1, \ldots, X_n = x_n]$, $Pr([X_1 = x_1, \ldots, X_n = x_n])$

$X = x$, $Pr(X)$

Random Variable

$X(\omega), \omega \in \Omega$

$Pr(\mathcal{F})$

Experiment

\mathcal{F} (Sigma Algebra)

Ω (Sample Space)
Samples II

- **Sample** - repeated observations of a random variable X, generated by experimental trials

- We will consider samples that result from n experimental trials (what would be the ideal $n = \text{ideal experiment}$!?)

- We already have the formalism to represent a sample of size n, specifically this is a random vector:

 $$[X = x] = [X_1 = x_1, \ldots, X_n = x_n]$$

- As an example, for our two coin flip experiment / number of tails r.v., we could perform $n=3$ experimental trials, which would produce a sample = random vector with three elements
Samples III

- Note that since we have defined (or more accurately induced!) a probability distribution $\Pr(X)$ on our random variable, this means we have induced a probability distribution on the sample (!!):

$$\Pr(X = x) = P_X(x) \text{ or } f_X(x) = \Pr(X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n)$$

- This is the sample probability distribution or sampling distribution (often called the joint sampling distribution)

- While samples could take a variety of forms, we generally assume that each possible observation in the sample has the same form, such that they are identically distributed:

$$\Pr(X_1 = x_1) = \Pr(X_2 = x_2) = \ldots = \Pr(X_n = x_n)$$

- We also generally assume that each observation is independent of all other observations:

$$\Pr(X = x) = \Pr(X_1 = x_1)\Pr(X_2 = x_2)\ldots\Pr(X_n = x_n)$$

- If both of these assumptions hold, than the sample is independent and identically distributed, which we abbreviate as i.i.d.
Example of sampling distributions

- As an example, consider our height experiment (reals as approximate sample space) / normal probability model (with true but unknown parameters $\theta = [\mu, \sigma^2]$ / identity random variable

- If we assume an i.i.d sample, each sample $X_i = x_i$ has a normal distribution with parameters $\theta = [\mu, \sigma^2]$ and each is independent of all other $X_j = x_j$

- For example, the sampling distribution for an i.i.d sample of $n = 2$ is:
Samples IV

- Technical note I: when considering a sample where each observation is independent, the actual sample space is actually a “product” of sample spaces (product space) where each random variable in the sample (the random vector of the sample) is a function on one of the sample spaces:

\[\Omega_{\text{ind}} = \Omega_1 \times \Omega_2 \times ... \times \Omega_n \]

- If this is the case, why have we bothered considering a case where we define multiple random variables on a “single” sample space, e.g., \(X_1(\Omega) \) and \(X_2(\Omega) \)?

- There are many reasons but when considering samples we may want to consider each observation of the sample to contain two observations, i.e., each observation in the sample is a vector (!!) and the sample is a set of vectors (a matrix!)

- Technical note II: regardless of the size of \(n \), there is a sampling distribution although as \(n \rightarrow \infty \) this becomes a probability distribution that only assigns a non-zero value (one!) to only the entire sample space element of the Sigma Algebra
Samples V

- It is important to keep in mind, that while we have made assumptions such that we can define the joint probability distribution of (all) possible samples that could be generated from \(n \) experimental trials, in practice we only observe one set of trials, i.e. one sample.

- For example, for our one coin flip experiment / number of tails r.v., we could produce a sample of \(n = 10 \) experimental trials, which might look like:

\[
\mathbf{x} = [1, 1, 0, 1, 0, 0, 0, 1, 1, 0]
\]

- As another example, for our measure heights / identity r.v., we could produce a sample of \(n = 10 \) experimental trials, which might look like:

\[
\mathbf{x} = [-2.3, 0.5, 3.7, 1.2, -2.1, 1.5, -0.2, -0.8, -1.3, -0.1]
\]

- In each of these cases, we would like to use these samples to perform inference (i.e. say something about our parameter of the assumed probability model).

- Using the entire sample is unwieldy, so we do this by defining a statistic.
Reminder: Samples

Sample of size n

$X = x$, $Pr(X)$

Random Variable

$X(\omega), \omega \in \Omega$

$Pr(\mathcal{F})$

Experiment

\mathcal{X}

Ω

(Sample Space)

\mathcal{F}

(Sigma Algebra)
This concept is often introduced to us as an intuitive definition of a function: a mathematical operator that takes an input and produces an output. Before we consider the specifics of how we define a function, let's consider the intuitive definition of a function:

\[T(X), \Pr(T(X)) \]

Statistic

\[[X_1 = x_1, \ldots, X_n = x_n], \Pr([X_1 = x_1, \ldots, X_n = x_n]) \]

Sample of size n

\[X = x, \Pr(X) \]

Sampling Distribution

\[\mathcal{X} \]

Random Variable

\[X(\omega), \omega \in \Omega \]

\[\Pr(\mathcal{F}) \]

Experiment

\[\Omega \]

\[\mathcal{F} \]
Statistics I

- **Statistic** - a function on a sample
- Note that a statistic T is a function that takes a vector (a sample) as an input and returns a value (or vector):

$$T(x) = T(x_1, x_2, \ldots, x_n) = t$$

- For example, one possible statistic is the mean of a sample:

$$T(x) = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- It is critical to realize that, just as a probability model on X induces a probability distribution on a sample, since a statistic is a function on the sample, this induces a probability model on the statistic: the statistic probability distribution or the sampling distribution of the statistic (!!)
Statistics II

- As an example, consider our height experiment (reals as approximate sample space) / normal probability model (with true but unknown parameters \(\theta = [\mu, \sigma^2] \) / identity random variable

- If we calculate the following statistic:

\[
T(x) = \frac{1}{n} \sum_{i=1}^{n} x_i
\]

what is \(\Pr(T(X)) \) ?

- Are the distributions of \(X_i = x_i \) and \(\Pr(T(X)) \) always the same?
Statistics and estimators I

- Recall for the purposes of inference, we would like to use a sample to say something about the specific parameter value (of the assumed) family or probability models that could describe our sample space.
- Said another way, we are interested in using the sample to determine the “true” parameter value that describes the outcomes of our experiment.
- An approach for accomplishing this goal is to define our statistic in a way that it will allow us to say something about the true parameter value.
- In such a case, our statistic is an estimator of the parameter: $T(x) = \hat{\theta}$.
- There are many ways to define estimators (we will focus on maximum likelihood estimators in this course).
- Each estimator has different properties and there is no perfect estimator.
We are going to define a function \(T(X) \), \(Pr(T(X)) \) from class).

The values taken by the random variable \(X \) let’s consider the intuitive definition of a function:

\[
F(x) = \begin{cases}
1 & \text{if } x \in A \\
0 & \text{otherwise}
\end{cases}
\]

\(F(x) \) is a function that maps \(x \) to \(\{ 0, 1 \} \). For example, we can have the function \(F(x) = \begin{cases}
1 & \text{if } x \in A \\
0 & \text{otherwise}
\end{cases} \) which map \(A \) to \(\{ 0, 1 \} \).

This concept is often introduced to us as an intuitive def. u (to numbers):

\[
\text{Function } F : X \rightarrow \mathbb{R}
\]

To do this, we define a function \(F \) for \(X \) (for \(X \) to \(\mathbb{R} \)).

The values taken by \(X \) or \(X \) to \(\mathbb{R} \).

To use sample spaces in probability, we need a way to map these sets to the real numbers.

This follows from the third axiom of probability which map \(\Omega \) to \(\mathbb{R} \).

\(\text{Random Variable } X \) is a mathematical operator that takes an input and produces an output.

\[
X = x, Pr(X)
\]

Sampling Distribution

Sample of size \(n \)

Statist(s)

Statistic Sampling Distribution

\[
[X_1 = x_1, \ldots, X_n = x_n], Pr([X_1 = x_1, \ldots, X_n = x_n])
\]

Experiment

\[
\Omega, Pr(\mathcal{F})
\]

\[
\mathcal{F} = \{ \emptyset, \Omega \}
\]

\[\text{random variables } X(\omega), \omega \in \Omega \]
That’s it for today

- Next lecture, we will introduce likelihood and maximum likelihood estimators