Quantitative Genomics and Genetics
BTRY 4830/6830; PBSB.5201.01

Lecture 8: Hypothesis testing and final general inference topics

Jason Mezey
jgm45@cornell.edu
Feb. 25, 2016 (T) 8:40-9:55
• CLASS TUES, March 1st IS CANCELLED (I will send out an email announcement later today + post an updated schedule)

• Several typos in Homework #3 (!!) I will send out an email and post a correction
 • 2g: nx2 matrix should be Mx2
 • 2i: there are no commas between numbers (!!)
 • 2i: missing negative

• Reminder: Homework #4 will still be available Tues. and due 11:59PM, March 7

• For NYC folks: office hours today will be in a different room (!!) - I will send out an email today (Ithaca will be the same room as always)
Summary of lecture 8

- Last lecture, we completed our general discussion of estimation
- Today we will (briefly) consider the concept of confidence intervals
- We will also begin our discussion of hypothesis testing
Conceptual Overview

System

Question

Sample

Inference

Prob. Models

Statistics

Assumptions
This concept is often introduced to us as the function

\[T(x) \quad Pr(T(X)|\theta) \]

Then

\[\frac{1}{2} \quad \frac{1}{2} \quad \frac{1}{2} \]
Review of essential concepts

• **Inference** - the process of reaching a conclusion about the true probability distribution (from an assumed family of probability distributions indexed by parameters) on the basis of a sample

• **System, Experiment, Experimental Trial, Sample Space, Sigma Algebra, Probability Measure, Random Vector, Parameterized Probability Model, Sample, Sampling Distribution, Statistic, Statistic Sampling Distribution, Estimator, Estimator Sampling distribution**
Confidence intervals I

- For the estimation framework we have considered thus far, our goal was to define an estimator that provides a “reasonable guess given the sample” of the true value of the parameter.

- This is called “point” estimation since the true parameter has a single value (i.e. it is a point).

- We could also estimate an interval, where our goal is to say something about the chances that the true parameter (the point) would fall in the interval.

- **confidence interval** (CI) - an estimate of an interval defined such that if it were estimated individually for an infinite number of samples, a specific percentage of the estimated intervals would contain the true parameter value.

- Don’t worry if this concept seems confusing (it is!) let’s first consider an example and then discuss some basics.
Confidence intervals II

- As an example, assume the standard normal r.v. $X \sim N(0,1)$ correctly describes our sampling distribution if we were to produce 50 independent samples, each of size $n=10$ and we were to estimate a CI for each one, we would expect to get the following:
Confidence intervals III

- A CI is therefore calculated from a sample (and reflects uncertainty!)

- A CI is an estimate of an interval, as opposed to an estimate of a parameter, which is a point estimate (more technically, the CI is an estimate of the endpoints of the interval)

- This estimated interval of a CI (generally) includes the estimate of the parameter in the “middle”

- In general, a CI provides a measure of “confidence” in the sense that the smaller the interval, the more “confidence” we have in our estimate (if this seems circular, it is meant to be!)

- In general, we can make the CI smaller with a larger sample size n and by decreasing the probability that the interval contains the true parameter value, i.e. a 95% CI is smaller than a 99% CI

- NOTE THAT A 95% CI estimated from one sample does not contain the true parameter value with a probability of 0.95 (!!!) - the definition of a CI says if we performed an infinite number of samples, and calculated the CI for each, then 95% of these intervals would contain the true parameter value (strange?)
Estimation and Hypothesis Testing

• Thus far we have been considering a “type” of inference, estimation, where we are interested in determining the actual value of a parameter.

• We could ask another question, and consider whether the parameter is NOT a particular value.

• This is another “type” of inference called hypothesis testing.

• We will use hypothesis testing extensively in this course.
Hypothesis testing I

- To build this framework, we need to start with a definition of hypothesis
- **Hypothesis** - an assumption about a parameter
- More specifically, we are going to start our discussion with a *null hypothesis*, which states that a parameter takes a specific value, i.e. a constant

\[H_0 : \theta = c \]

- For example, for our height experiment / identity random variable, we have \(Pr(X|\theta) \sim N(\mu, \sigma^2) \) and we could consider the following null hypothesis:

\[H_0 : \mu = 0 \]
Hypothesis testing II

• Our goal in hypothesis testing is to use a sample to reach a conclusion about the null hypothesis.

• To do this, just as in estimation, we will make use of a statistic (a function on the sample), where recall we know the sampling distribution (the probability distribution) of this statistic.

• More specifically, we will consider the probability distribution of this statistic, assuming that the null hypothesis is true:

\[Pr(T(X = x | \theta = c)) \]

• Note that this means we have a probability distribution of the statistic given the null hypothesis!!

• We will use this distribution to construct a \textit{p-value}.
Hypothesis testing III

- As example, consider our height experiment (reals as sample space) / identity random variable X / normal probability model $\theta = [\mu, \sigma^2]$ / sample $n=1$ (of one height measurement) / identity statistic $T(x) = x$ (takes the height measured height)

- Let’s assume that $\sigma^2 = 1$ and say we are interested in testing the following null hypothesis $H_0 : \mu = 5.5$ such that we have the following probability distribution of the statistic under the null hypothesis:

![Graph of Pr(T(x) | H0)](image_url)
We quantify our intuition as to whether we would have observed the value of our statistics given the null is true with a \textit{p-value}.

\textbf{p-value} - the probability of obtaining a value of a statistic $T(x)$, or more extreme, conditional on H_0 being true.

Formally, we can express this as follows:

\begin{equation}
 pval = Pr(|T(x)| \geq t | H_0 : \theta = c)
\end{equation}

Note that a p-value is a function on a statistic (!!) that takes the value of a statistic as input and produces a p-value as output in the range $[0, 1]$: \(pval(T(x)) : T(x) \rightarrow [0, 1] \)
As an intuitive example, let’s consider a continuous sample space experiment / identify r.v. / normal family / \(n=1 \) sample / identity statistic, i.e. \(T(x) = x \)

Assume we know \(\sigma^2 = 1 \) (is this realistic?), let’s say we are interested in testing the null hypothesis \(H_0 : \mu = 0 \) and let’s say that we assume that if we are wrong the value of \(\mu \) will be greater than zero (why?)
p-value III

- Same example: let’s consider a continuous sample space experiment / identify r.v. / normal family / $n=1$ sample / identity statistic, i.e. $T(X) = X$ / assume we know $\sigma^2 = 1$ / we test the null hypothesis $H_0 : \mu = 0$ and let’s assume that if we are wrong the value of μ could be in either direction (again, why?)
p-value IV

- More technically a p-value is determined not just by the probability of the statistic given the null hypothesis is true, but also whether we are considering a “one-sided” or “two-sided” test.

- For a one-sided test (towards positive values), the p-value is:

\[
pval(T(x)) = \int_{T(x)}^{\infty} Pr(T(x)|\theta = c) \,dT(x)
\]

\[
pval(T(x)) = \sum_{T(x)} Pr(T(x)|\theta = c)
\]

- For a two-sided test, the p-value is:

\[
pval(T(x)) = \int_{-\infty}^{-|\text{median}(T(X))|} Pr(T(x)|\theta = c) \,dT(x) + \int_{|\text{median}(T(X))|}^{\infty} Pr(T(x)|\theta = c) \,dT(x)
\]

\[
pval(T(x)) = \sum_{\text{min}(T(X))}^{-|\text{median}(T(X))|} Pr(T(x)|\theta = c) + \sum_{|\text{median}(T(X))|}^{\text{max}(T(X))} Pr(T(x)|\theta = c)
\]
Hypothesis decisions I

- We use the p-value to make a decision about the null hypothesis.
- Specifically, we use the p-value for our sample to decide whether we “accept” (or better stated: “cannot reject”) the null hypothesis or “reject” the null hypothesis.
- To do this, we use a value α such that if the p-value is below this value we “reject”, if it is above we “cannot reject” (note that this corresponds to a critical value of the statistic C_{α}).
- For example for a value $\alpha = 0.05$ we have the following for our previous examples:

$$\alpha = \int_{c_{\alpha}}^{\infty} f_X(x) \, dx$$

$$\alpha = \int_{-\infty}^{-c_{\alpha}} f_X(x) \, dx + \int_{c_{\alpha}}^{\infty} f_X(x) \, dx$$
Hypothesis decisions II

- Note that there are two possible outcomes of a hypothesis test: we reject or we cannot reject.
- We never know for sure whether we are right (!!)
- If we cannot reject, this does not mean H0 is true (why? What if our p-value is 0.99?)
- The value α is called the type I error, the probability of incorrectly rejecting H0 when it is true.
- The value $1 - \alpha$ is the probability of making a correct decision not to reject H0.
- Note that we can control the level of type I error because we decide on the value of α.
Assume H0 is correct (!): $\mu = 0$

Sample I:
$T(x) = -0.755$
$p = 0.45$

Sample II:
$T(x) = 2.8$
$p = 0.0025$

One-sided test

Two-sided test
Results of hypothesis decisions I: when H0 is correct (!!)

- There are only two possible decisions we can make as a result of our hypothesis test: reject or cannot reject

<table>
<thead>
<tr>
<th>H0 is true</th>
<th>1-(\alpha), (correct)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cannot reject (H_0)</td>
<td>(1-\alpha), (correct)</td>
</tr>
<tr>
<td>reject (H_0)</td>
<td>(\alpha), type I error</td>
</tr>
</tbody>
</table>

\[
Pr(T(x) \mid H0)
\]

\[
T(x)
\]
Results of hypothesis decisions I: when H0 is correct (!!)

- There are only two possible decisions we can make as a result of our hypothesis test: reject or cannot reject

<table>
<thead>
<tr>
<th>Decision</th>
<th>H₀ is true</th>
</tr>
</thead>
<tbody>
<tr>
<td>cannot reject H₀</td>
<td>1-α, (correct)</td>
</tr>
<tr>
<td>reject H₀</td>
<td>α, type I error</td>
</tr>
</tbody>
</table>

\(\Pr(T(x) \mid H₀) \)

\(c_α = 1.64 \)
Results of hypothesis decisions I:
when H0 is correct (!!)

- There are only two possible decisions we can make as a result of our hypothesis test: reject or cannot reject.

<table>
<thead>
<tr>
<th></th>
<th>H0 is true</th>
<th>H0 is not true</th>
</tr>
</thead>
<tbody>
<tr>
<td>cannot reject H0</td>
<td>1-α, (correct)</td>
<td>α, type 1 error</td>
</tr>
<tr>
<td>reject H0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Graph](image)
Assume H0 is wrong (!): \(\mu = 3 \)

one-sided test

\[\alpha = 0.05 \]

\[c_\alpha = 1.64 \]

\(p = 0.77 \)

Sample I:

\(T(\mathbf{x}) = -0.755 \)

\(p = 0.0025 \)

\[c_\alpha = 1.96 \]

Sample II:

\(T(\mathbf{x}) = 2.8 \)

\(p = 0.005 \)

\(-c_\alpha \)
There are only two possible decisions we can make as a result of our hypothesis test: reject or cannot reject.

<table>
<thead>
<tr>
<th>Decision</th>
<th>H_0 is true</th>
<th>H_0 is false</th>
</tr>
</thead>
<tbody>
<tr>
<td>cannot reject H_0</td>
<td>$1 - \alpha$, (correct)</td>
<td>β, type II error</td>
</tr>
<tr>
<td>reject H_0</td>
<td>α, type I error</td>
<td>$1 - \beta$, power (correct)</td>
</tr>
</tbody>
</table>
Results of hypothesis decisions II: when H0 is wrong (!!)

- There are only two possible decisions we can make as a result of our hypothesis test: reject or cannot reject.

<table>
<thead>
<tr>
<th></th>
<th>H₀ is true</th>
<th>H₀ is false</th>
</tr>
</thead>
<tbody>
<tr>
<td>cannot reject H₀</td>
<td>1-α, (correct)</td>
<td>β, type II error</td>
</tr>
<tr>
<td>reject H₀</td>
<td>α, type I error</td>
<td>1 - β, power (correct)</td>
</tr>
</tbody>
</table>

\[\Pr(T(x) \mid H₀) \] for a given value of \(x \) that could take values from (+∞, −∞).

\[T(x) \] is how we assess our null hypothesis. However, this is still does not provide us a guideline quite small. Can we interpret this as evidence against H₀?

\[p \text{-value} \] is a function of our statistic. If our statistic is (equal to) or greater than a particular value, this is an example of a one-sided test. The various critical concepts in hypothesis tests have a close relationship with p-values.

\[\text{results of hypothesis decisions II} \] (see diagram on board for an example). Also, note in this particular case:

\[H₀ \] is true

\[H₀ \] is false

\[0 \]

\[c \]

\[1 - \alpha \]

\[\beta \]

\[1 - \beta \]

\[\alpha \]

\[\beta \text{, type II error} \]

\[1 - \beta \text{, power (correct)} \]

\[p \text{-value} \]

\[\text{results of hypothesis decisions II} \] (see diagram on board for an example). Also, note in this particular case:

\[H₀ \] is true

\[H₀ \] is false

\[0 \]

\[c \]

\[1 - \alpha \]

\[\beta \]

\[1 - \beta \]

\[\alpha \]

\[\beta \text{, type II error} \]

\[1 - \beta \text{, power (correct)} \]

\[p \text{-value} \] is a function of our statistic. If our statistic is (equal to) or greater than a particular value, this is an example of a one-sided test. The various critical concepts in hypothesis tests have a close relationship with p-values.
Results of hypothesis decisions II: when H0 is wrong (!!)

- There are only two possible decisions we can make as a result of our hypothesis test: reject or cannot reject

<table>
<thead>
<tr>
<th></th>
<th>H_0 is true</th>
<th>H_0 is false</th>
</tr>
</thead>
<tbody>
<tr>
<td>cannot reject H_0</td>
<td>$1 - \alpha$, (correct)</td>
<td></td>
</tr>
<tr>
<td>reject H_0</td>
<td>α, type I error</td>
<td>β, type II error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1 - \beta$, power (correct)</td>
</tr>
</tbody>
</table>

[Diagram showing probability distributions and critical value]
To do this, we define a function $T(x) = \Pr(T(X) | \theta)$. This concept is often introduced to us as a procedure for generating a random sample from a population.

A sample of size n is given by $[X_1 = x_1, \ldots, X_n = x_n]$, and the probability of this sample is $\Pr([X_1 = x_1, \ldots, X_n = x_n])$. This is the sampling distribution of the sample.

A random variable is a function $X = x$, and the probability of X is $\Pr(X)$. The random variable X is a function of the experiment \mathcal{X}, which is a mathematical operator that takes an input and produces an output.

The set of all possible outcomes of the experiment is denoted by Ω, and the set of all possible events is denoted by \mathcal{F}. The probability of an event \mathcal{E} is denoted by $\Pr(\mathcal{E})$. The parameter space is denoted by Θ.
Hypothesis Tests

\[H_0 : \theta = c \quad \theta \in \Theta \]

\[T(x) \quad Pr(T(X)|H_0 : \theta = c) \]

\[[X_1 = x_1, \ldots, X_n = x_n] \quad Pr([X_1 = x_1, \ldots, X_n = x_n]) \]

Sample of size \(n \)

Sampling Distribution

\[X = x \quad Pr(X) \]

Random Variable

\[\mathcal{X} \]

\[X(\omega), \omega \in \Omega \]

\[Pr(\mathcal{F}) \]

Experiment

\[\Omega \]

\[\mathcal{F} \]
That’s it for today

• Next week: hypothesis testing II (our last general probability and statistic lecture!)